237 research outputs found

    Improved GelSight Tactile Sensor for Measuring Geometry and Slip

    Full text link
    A GelSight sensor uses an elastomeric slab covered with a reflective membrane to measure tactile signals. It measures the 3D geometry and contact force information with high spacial resolution, and successfully helped many challenging robot tasks. A previous sensor, based on a semi-specular membrane, produces high resolution but with limited geometry accuracy. In this paper, we describe a new design of GelSight for robot gripper, using a Lambertian membrane and new illumination system, which gives greatly improved geometric accuracy while retaining the compact size. We demonstrate its use in measuring surface normals and reconstructing height maps using photometric stereo. We also use it for the task of slip detection, using a combination of information about relative motions on the membrane surface and the shear distortions. Using a robotic arm and a set of 37 everyday objects with varied properties, we find that the sensor can detect translational and rotational slip in general cases, and can be used to improve the stability of the grasp.Comment: IEEE/RSJ International Conference on Intelligent Robots and System

    Active Clothing Material Perception using Tactile Sensing and Deep Learning

    Full text link
    Humans represent and discriminate the objects in the same category using their properties, and an intelligent robot should be able to do the same. In this paper, we build a robot system that can autonomously perceive the object properties through touch. We work on the common object category of clothing. The robot moves under the guidance of an external Kinect sensor, and squeezes the clothes with a GelSight tactile sensor, then it recognizes the 11 properties of the clothing according to the tactile data. Those properties include the physical properties, like thickness, fuzziness, softness and durability, and semantic properties, like wearing season and preferred washing methods. We collect a dataset of 153 varied pieces of clothes, and conduct 6616 robot exploring iterations on them. To extract the useful information from the high-dimensional sensory output, we applied Convolutional Neural Networks (CNN) on the tactile data for recognizing the clothing properties, and on the Kinect depth images for selecting exploration locations. Experiments show that using the trained neural networks, the robot can autonomously explore the unknown clothes and learn their properties. This work proposes a new framework for active tactile perception system with vision-touch system, and has potential to enable robots to help humans with varied clothing related housework.Comment: ICRA 2018 accepte

    Connecting Look and Feel: Associating the visual and tactile properties of physical materials

    Full text link
    For machines to interact with the physical world, they must understand the physical properties of objects and materials they encounter. We use fabrics as an example of a deformable material with a rich set of mechanical properties. A thin flexible fabric, when draped, tends to look different from a heavy stiff fabric. It also feels different when touched. Using a collection of 118 fabric sample, we captured color and depth images of draped fabrics along with tactile data from a high resolution touch sensor. We then sought to associate the information from vision and touch by jointly training CNNs across the three modalities. Through the CNN, each input, regardless of the modality, generates an embedding vector that records the fabric's physical property. By comparing the embeddings, our system is able to look at a fabric image and predict how it will feel, and vice versa. We also show that a system jointly trained on vision and touch data can outperform a similar system trained only on visual data when tested purely with visual inputs

    Slow and Smooth: A Bayesian Theory for the Combination of Local Motion Signals in Human Vision

    Get PDF
    In order to estimate the motion of an object, the visual system needs to combine multiple local measurements, each of which carries some degree of ambiguity. We present a model of motion perception whereby measurements from different image regions are combined according to a Bayesian estimator --- the estimated motion maximizes the posterior probability assuming a prior favoring slow and smooth velocities. In reviewing a large number of previously published phenomena we find that the Bayesian estimator predicts a wide range of psychophysical results. This suggests that the seemingly complex set of illusions arise from a single computational strategy that is optimal under reasonable assumptions

    Separating Reflections from Images Using Independent Components Analysis

    Get PDF
    The image of an object can vary dramatically depending on lighting, specularities/reflections and shadows. It is often advantageous to separate these incidental variations from the intrinsic aspects of an image. Along these lines this paper describes a method for photographing objects behind glass and digitally removing the reflections off the glass leaving the image of the objects behind the glass intact. We describe the details of this method which employs simple optical techniques and independent components analysis (ICA) and show its efficacy with several examples

    GelSight Svelte Hand: A Three-finger, Two-DoF, Tactile-rich, Low-cost Robot Hand for Dexterous Manipulation

    Full text link
    This paper presents GelSight Svelte Hand, a novel 3-finger 2-DoF tactile robotic hand that is capable of performing precision grasps, power grasps, and intermediate grasps. Rich tactile signals are obtained from one camera on each finger, with an extended sensing area similar to the full length of a human finger. Each finger of GelSight Svelte Hand is supported by a semi-rigid endoskeleton and covered with soft silicone materials, which provide both rigidity and compliance. We describe the design, fabrication, functionalities, and tactile sensing capability of GelSight Svelte Hand in this paper. More information is available on our website: \url{https://gelsight-svelte.alanz.info}.Comment: Submitted and accepted to IROS 2023 workshop on Visuo-Tactile Perception, Learning, Control for Manipulation and HRI (IROS RoboTac 2023

    GelSight Svelte: A Human Finger-shaped Single-camera Tactile Robot Finger with Large Sensing Coverage and Proprioceptive Sensing

    Full text link
    Camera-based tactile sensing is a low-cost, popular approach to obtain highly detailed contact geometry information. However, most existing camera-based tactile sensors are fingertip sensors, and longer fingers often require extraneous elements to obtain an extended sensing area similar to the full length of a human finger. Moreover, existing methods to estimate proprioceptive information such as total forces and torques applied on the finger from camera-based tactile sensors are not effective when the contact geometry is complex. We introduce GelSight Svelte, a curved, human finger-sized, single-camera tactile sensor that is capable of both tactile and proprioceptive sensing over a large area. GelSight Svelte uses curved mirrors to achieve the desired shape and sensing coverage. Proprioceptive information, such as the total bending and twisting torques applied on the finger, is reflected as deformations on the flexible backbone of GelSight Svelte, which are also captured by the camera. We train a convolutional neural network to estimate the bending and twisting torques from the captured images. We conduct gel deformation experiments at various locations of the finger to evaluate the tactile sensing capability and proprioceptive sensing accuracy. To demonstrate the capability and potential uses of GelSight Svelte, we conduct an object holding task with three different grasping modes that utilize different areas of the finger. More information is available on our website: https://gelsight-svelte.alanz.infoComment: Submitted and accepted to 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2023

    GelSlim: A High-Resolution, Compact, Robust, and Calibrated Tactile-sensing Finger

    Full text link
    This work describes the development of a high-resolution tactile-sensing finger for robot grasping. This finger, inspired by previous GelSight sensing techniques, features an integration that is slimmer, more robust, and with more homogeneous output than previous vision-based tactile sensors. To achieve a compact integration, we redesign the optical path from illumination source to camera by combining light guides and an arrangement of mirror reflections. We parameterize the optical path with geometric design variables and describe the tradeoffs between the finger thickness, the depth of field of the camera, and the size of the tactile sensing area. The sensor sustains the wear from continuous use -- and abuse -- in grasping tasks by combining tougher materials for the compliant soft gel, a textured fabric skin, a structurally rigid body, and a calibration process that maintains homogeneous illumination and contrast of the tactile images during use. Finally, we evaluate the sensor's durability along four metrics that track the signal quality during more than 3000 grasping experiments.Comment: RA-L Pre-print. 8 page

    GelSight360: An Omnidirectional Camera-Based Tactile Sensor for Dexterous Robotic Manipulation

    Full text link
    Camera-based tactile sensors have shown great promise in enhancing a robot's ability to perform a variety of dexterous manipulation tasks. Advantages of their use can be attributed to the high resolution tactile data and 3D depth map reconstructions they can provide. Unfortunately, many of these tactile sensors use either a flat sensing surface, sense on only one side of the sensor's body, or have a bulky form-factor, making it difficult to integrate the sensors with a variety of robotic grippers. Of the camera-based sensors that do have all-around, curved sensing surfaces, many cannot provide 3D depth maps; those that do often require optical designs specified to a particular sensor geometry. In this work, we introduce GelSight360, a fingertip-like, omnidirectional, camera-based tactile sensor capable of producing depth maps of objects deforming the sensor's surface. In addition, we introduce a novel cross-LED lighting scheme that can be implemented in different all-around sensor geometries and sizes, allowing the sensor to easily be reconfigured and attached to different grippers of varying DOFs. With this work, we enable roboticists to quickly and easily customize high resolution tactile sensors to fit their robotic system's needs
    • …
    corecore